
Tests

LA-UR-XXXX

Improvements Towards the Release of the Pavilion 2.0 Test Harness

Overview

The following tests are already available on the LANL clusters:

hello_mpi ior* supermagic magic_cookies

imb* license-check slow_test* stream†

How to use Pavilion
Step 1: Write a test (specify build, run, scheduler, results, etc.
specifications)
Step 2: Run test(s) or suite(s) (optional: view status)
Step 3: Get result, debug as needed

bash $ pav run hello_world
Running 1 test in series s154.
 id | name | status | note
--
 154 | hello_world | SCHEDULED |

bash $ pav result
 id | name | result

 154 | hello_world | PASS

bash $ pav clean -v
Removing Tests...
Removed test 0000001
Removed test 0000002
Skipped test 0000003
Skipped test 0000004
Removing Series...
Removed series 0000001
Removed series 0000002
Skipped series 0000003
Removing Downloads...
Removing Builds...
Removed build 58d90e966a0976e2
Removed build c306e89258705bb1
Skipped build 4fe2db5550009a8f

Result Parser What it does Keys needed

Constant† inserts a given constant into the results constant

Command† runs a given command ● cmd
● success
● success_value
● stderr_out

Table† extracts values from a table and puts the
data in a nested dictionary

● row_names
● col_names

Commands

Pavilion Usage and Underlying Process

Result Parsers Other Features

Future Work & Acknowledgments

More advanced configuration capabilities:
● Variable-handling

○ Enable variable references in variable values†

○ Handle variable references within
permutations†

● Allow users to add commands to their kickoff
scripts*, regardless of scheduler

bash $ pav cancel 21 22 s22 s23
test 21 cancelled.
test 22 could not be cancelled has state: SCHED_CANCELLED.
test 24 cancelled.
test 25 cancelled.

High performance computing production support entails thorough testing in order
to evaluate the efficacy of a system for production-grade workloads. There are
various phases of a system’s life-cycle to assess, requiring different methods to
accomplish effective evaluation of performance and correctness. Due to the
unique and distributed nature of an HPC system, the necessity for sophisticated
tools to automatically harness and assess test results, all while interacting with
schedulers and programming environment software, requires a customizable,
extensible, and lightweight system to manage concurrent testing.

*:Everson †: Lapid

hello_world.yaml

hello_world:
 run:
 cmds:
 - ‘echo hello’

bash $ pav log run 77
Output of Stream test:

Function Best Rate MB/s Avg time Min time Max time
Copy: 6212.9 0.028593 0.025753 0.032994
Scale: 6000.8 0.029258 0.026663 0.032463
Add: 8469.2 0.031915 0.028338 0.034907
Triad: 8106.8 0.033490 0.029605 0.040039

Output of clean command

Output of cancel command

A simple test config

Output of pav run and pav result

Sample table that can be parsed by the table result parser and the yaml config for it

-bash-4.2$ pav status --all --limit 4
 Test statuses
---------+--------+---------------+--------------------------------+----------------
 Test id | Name | State | Time | Note
---------+--------+---------------+--------------------------------+----------------
 472 | stream | RESULTS_ERROR | 15 Jul 2019 10:06:38 UTC-06:00 | The test...
 473 | stream | COMPLETE | 18 Jul 2019 10:09:48 UTC-06:00 | The test...
 474 | stream | RESULTS_ERROR | 18 Jul 2019 10:10:50 UTC-06:00 | The test...
 475 | stream | COMPLETE | 18 Jul 2019 10:14:48 UTC-06:00 | The test...
Output of status --all command

Result parsers look at the output of the benchmarks, determine what makes a
test “pass”, and can extract important data from the test’s output.

Commands are one way to add functionality to Pavilion and are the main way users interact with the system. The plugin
system makes it simple for users to add their own commands, or overwrite existing ones, according to their preferences and
machine specifics. We added the following commands:

● log - outputs the log file (build, kickoff, or run) of a given test†

● cancel - used to cancel a provided test, group of tests, or test series*
● clean - used to wipe out the Pavilion working directory (removes all tests, series,

downloads, and build directories)*
● status --all - prints the last few tests run by a user†

● run --status - prints the status of the jobs started with the run command*

bash $ pav log run 154
hello

bash $ pav log kickoff 154
The kickoff log is empty.

bash $ pav log build 154
The build log is empty.

stream.yaml
results:
 table:
 row_names: [‘Copy’, ‘Scale’, ‘Add’, ‘Triad’]
 col_names: [‘Best Rate MB/s’, ‘Avg time’, ‘Min time’, ‘Max time’]

Output of log command

VAR1

VAR2VAR3

Circular references

Other features:
● For an improved user experience, we designed and implemented an

algorithm to automatically wrap output tables*
● Checking for extraneous prints†

Although some of the contributions we made are still works in progress, we hope
to have them completed soon so they can be fully integrated into Pavilion.
Additionally, we would like to introduce the following features:

● Slurm chunking - allow users to chunk up slurm jobs, when they
realistically cannot get all the nodes required on a certain machine

● Integrate more tests
● Further resolving variables

We would like to thank our mentors and the rest of the Programming and
Runtime Environments team (Dan Magee, Jordan Orgas, David Shrader, Calvin
Seamons, and Trent Steen) for helping us throughout the summer.

